Welcome to the Computational Biology Group


Continuous Time Conjunctive Bayesian Networks

Current version

0.1.04 Oct 2011


CT-CBN is a collection of two C programs, ct-cbn and h-cbn, that implement algorithms for model selection and maximum likelihood parameter estimation for continuous time conjunctive Bayesian networks. These graphical models have been designed to model the accumulation of mutations subject to constraints on the order in which the mutations can occur. The order constraints are encoded as a partially ordered set (poset) of genetic events. The waiting time for each event follows an independent exponential distribution.

The original ct-cbn program by Beerenwinkel and Sullivant (2009) implements selection of an optimal poset and estimation of exponential rates from censored data consisting only of the observed mutational patterns.

The hidden conjunctive Bayesian network model h-cbn accounts for noisy genotype observations (Gerstung et al., 2009). It also implemented a simulated annealing algorithm for structure search, a denoising of the genotypes via the maximum a posteriori (MAP) estimates, and the computation of the most likely progression.


CT-CBN is distributed under the GNU General Public License.

For changes between versions please see the file CHANGELOG.


Please consult the README file. The software requires the GSL library.

Data sets

We provide a collection of genetic data sets from three cancer studies conducted by the Vogelstein lab. The data consists of three tables with mutations and a mapping of genes to 12 core pathways (Parsons et al, 2008). The package also contains the python module for parsing the raw data and for bootstrap and permutation analyses. The module requires the numpy python module.

Authors and Contributors



Niko Beerenwinkel


Wichtiger Hinweis:
Diese Website wird in älteren Versionen von Netscape ohne graphische Elemente dargestellt. Die Funktionalität der Website ist aber trotzdem gewährleistet. Wenn Sie diese Website regelmässig benutzen, empfehlen wir Ihnen, auf Ihrem Computer einen aktuellen Browser zu installieren. Weitere Informationen finden Sie auf
folgender Seite.

Important Note:
The content in this site is accessible to any browser or Internet device, however, some graphics will display correctly only in the newer versions of Netscape. To get the most out of our site we suggest you upgrade to a newer browser.
More information

© 2014 ETH Zurich | Imprint | Disclaimer | 10 April 2012